Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(39): 46148-46156, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37730205

RESUMO

Strong molecular dopants for organic semiconductors that are stable against diffusion are in demand, enhancing the performance of organic optoelectronic devices. The conventionally used p-dopants based on 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its derivatives "FxTCN(N)Q", such as 2,3,4,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ), feature limited oxidation strength, especially for modern polymer semiconductors with high ionization energy (IE). These small molecular dopants also exhibit pronounced diffusion in the polymer hosts. Here, we demonstrate a facile approach to increase the oxidation strength of FxTCN(N)Q by coordination with four tris(pentafluorophenyl)borane (BCF) molecules using a single-step solution mixing process, resulting in bulky dopant complexes "FxTCN(N)Q-4(BCF)". Using a series of polymer semiconductors with IE up to 5.9 eV, we show by optical absorption spectroscopy of solutions and thin films that the efficiency of doping using FxTCN(N)Q-4(BCF) is significantly higher compared to that using FxTCN(N)Q or BCF alone. Electrical transport measurements with the prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT) confirm the higher doping efficiency of F4TCNQ-4(BCF) compared to F4TCNQ. Additionally, the bulkier structure of F4TCNQ-4(BCF) is shown to result in higher stability against drift in P3HT under an applied electric field as compared to F4TCNQ. The simple approach of solution-mixing of readily accessible molecules thus offers access to enhanced molecular p-dopants for the community.

2.
Chem Rev ; 122(4): 4420-4492, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34793134

RESUMO

Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.

3.
Nat Mater ; 20(9): 1248-1254, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33888905

RESUMO

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

4.
Nat Commun ; 10(1): 5538, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804495

RESUMO

Simultaneous control over both the energy levels and Fermi level, a key breakthrough for inorganic electronics, has yet to be shown for organic semiconductors. Here, energy level tuning and molecular doping are combined to demonstrate controlled shifts in ionisation potential and Fermi level of an organic thin film. This is achieved by p-doping a blend of two host molecules, zinc phthalocyanine and its eight-times fluorinated derivative, with tunable energy levels based on mixing ratio. The doping efficiency is found to depend on host mixing ratio, which is explained using a statistical model that includes both shifts of the host's ionisation potentials and, importantly, the electron affinity of the dopant. Therefore, the energy level tuning effect has a crucial impact on the molecular doping process. The practice of comparing host and dopant energy levels must consider the long-range electrostatic shifts to consistently explain the doping mechanism in organic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...